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3. Timeline:  
 
The data needed for this analysis will be available in 6 months; we plan to submit for 
publication within 1.5 year. 
 
4. Rationale:  
 
As we age, genetic mutations happen in our cells, causing changes that were not present 
in our germline DNA, a phenomenon named somatic mosaicism.  Like other stem cells, 
hematopoietic stem cells (HSC) have an increased chance of developing mosaicism. (1) 
A clone with survival benefits can expand and populate the peripheral blood (i.e., clonal 
hematopoiesis, CH). (2) The subset of CH with a driver mutation in one of the genes 
implicated in hematologic malignancies with variant allele frequency (VAF) of at least 
2% in the absence of known hematologic malignancy or other clonal disorders is called 
clonal hematopoiesis of indeterminate potential (CHIP). (3) 
 
Multiple studies confirmed CHIP as an age-related phenomenon that is rare before age 40 
and increases to 5%-10% at age 70. (4-6) CHIP is found to be associated with a 1.4-fold 
increase in all-cause mortality, which is not due to hematologic malignancies. (5, 6). 
Multiple studies confirmed an increased odds of coronary artery disease, (6-10) stroke, 
(6) and heart failure (11, 12) in patients with CHIP. To confirm the causality and 
elaborate on the pathophysiology of the observed association between CHIP and 
cardiovascular diseases, investigators used mice models and reported accelerated 
atherosclerosis (7, 13) and worsening heart function (14-17) in mice engrafted with bone 
marrow carrying the CHIP-associated mutations.  
 
Although CHIP has been accepted as a risk factor for cardiovascular diseases, little is 
known about factors associated with CHIP incidence and expansion. Age is the most 
crucial risk factor for CHIP, (4-6) and studies have suggested the increased odds of CHIP 
due to smoking, (18-20) previous chemo-radiotherapy, (19, 21) chronic infection, (22, 
23) and HIV. (24, 25) In addition, recent studies also have suggested that the 
inflammatory state due to atherosclerosis increases the risk of CHIP (16, 26) suggesting a 
bidirectional association of CHIP and cardiovascular diseases. However, these all came 
from cross-sectional studies, and there is a lack of longitudinal evidence on the risk 
factors of CHIP incidence and its natural history, such as factors contributing to CHIP 
expansion. 
 
Using the ARIC datasets, we aim to study the clinical conditions (e.g., myocardial 
infarction, heart failure, obesity, diabetes, and hypertension), lifestyle factors (e.g., 
smoking, diet, alcohol, BMI, and physical activity), and laboratory markers (e.g., lipid 
profile including LDL-C, TG, small dense LDL-C, Lp(a), and hsCRP), associated with 
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the incidence and expansion of CHIP. The ARIC study is ideal for this analysis given the 
comprehensive assessment of cardiovascular risk factors and having exome sequencing 
samples on different visits to ascertain CHIP. 
 
5. Main Hypothesis/Study Questions:  
 
Aim 1: Study the association of clinical conditions, lifestyle factors, and laboratory 
markers with incidence and expansion of CHIP (the selection of specific visits below are 
due to data availability of CHIP) 
 

Hypothesis 1: Cardiometabolic risk factors (diabetes, and hypertension), the 
presence of ASCVD (stroke, MI, CAD, PAD) and heart failure at V2 are associated 
with increased risk of incident CHIP at V5 
 
Hypothesis 2: Cardiometabolic risk factors (diabetes, and hypertension), the 
presence of ASCVD (stroke, MI, CAD, PAD) and heart failure at V2 are associated 
with an increased rate of CHIP expansion at V5 
 
Hypothesis 3: Unfavorable lifestyle factors at V2 are associated with an increased 
risk of incident CHIP at V5 
 
Hypothesis 4: Unfavorable lifestyle factors at V2 are associated with an increased 
rate of CHIP expansion at V5 

 
Hypothesis 5: Laboratory markers related to cardiometabolic risk, inflammation and 
subclinical cardiac injury at V2 are associated with an increased risk of incident 
CHIP at V5  
 
Hypothesis 6: Laboratory markers related to cardiometabolic risk, inflammation and 
subclinical cardiac injury at V2 are associated with an increased rate of CHIP 
expansion at V5 

 
Aim 1: Study the cross-sectional association of CHIP at V5 with clinical conditions, 
lifestyle factors, and laboratory markers  
 

Hypothesis 1: Presence of CHIP is associated with increased odds of ASCVD 
(stroke, MI, CAD, PAD) and heart failure 
 
Hypothesis 2: Presence of CHIP is associated with increased levels of inflammatory 
markers including IL6 and IL18 

 
6. Design and analysis (study design, inclusion/exclusion, outcome and other 
variables of interest with specific reference to the time of their collection, summary 
of data analysis, and any anticipated methodologic limitations or challenges if 
present). 
 



 
 

 

 

Study Design: Individuals with exome sequencing at ARIC both visit 2 and visit 5 (n = 
4214) 
 
Exclusions:  

• No exome sequencing available for CHIP calling  
• Sex-mismatched sequencing samples 
• Those with CHIP at V2 will be excluded from incidence analysis 

 
Exposure:  

• Prevalent clinical conditions at visit 2 
• Lifestyle factors at visit 2 
• Laboratory markers levels at visit 2 

 
Outcomes: 

1. Primary outcome: Incident CHIP, defined as the presence of CHIP in visit 5 while 
it was absent in visit 2 

2. Secondary outcome: CHIP expansion, defined as an increased variant allele 
frequency in visit 5 or a new mutation found in visit 5 in those who had CHIP at 
visit 2  

3. Exploratory outcomes: Incidence of large clones at V5, Incidence of Gene-
specific CHIP at V5 

4. Exploratory analysis: Cross-sectional study of CHIP at V5 with inflammatory 
markers and ASCVD 

 
Covariates:  

Demographic including age, sex, race/ethnicity; clinical conditions including myocardial 
infarction, stroke, coronary revascularization,  history of other atherosclerotic 
cardiovascular diseases including peripheral vascular disease (PAD), malignancy, 
hypertension, diabetes mellitus, dyslipidemia; lifestyle factors including obesity, cigarette 
smoking, alcohol use, diet, physical activity, body mass index (BMI); medication history 
including chemo or radiation therapy lipid-lowering medication use, antihypertensive 
medication use, glucose-lowering medication use; and laboratory markers including 
complete blood count (CBC, measured at V1), low-density lipoprotein cholesterol (LDL-
C), high-density lipoprotein cholesterol (HDL-C), triglyceride, small dense LDL-C 
(measured at V4), LDL-triglyceride (measured at V4), Lp(a) (measured at V4), 
hemoglobin A1c (HbA1c), fructosamine, glycated albumin, 1,5-anhydroglucitol, cystatin 
C, estimated glomerular filtration rate (eGFR), high-sensitivity C-reactive protein 
(hsCRP), high-sensitivity cardiac troponin T (hs-cTnT), and N-terminal pro-brain 
natriuretic peptide (NT-proBNP), β–2 microglobulin, alanine aminotransferase, aspartate 
aminotransferase, gamma-glutamyltransferase, fibroblast growth factor 23, galectin 3, 
and Vitamin D [inclusive of: 25 hydroxyvitamin D3, 25 hydroxyvitamin D3, vitamin D3 
epimer (3-epi-25(OH)D3]. 

CHIP will be determined using exome sequencing (ES) of blood DNA using the GATK 
MuTect2 (27) somatic variant caller based on the 74 prespecified driver sequence 



 
 

 

 

variations in genes known to promote clonal expansion of hematopoietic stem cells. (6, 7, 
28) A conventional variant allele frequency (VAF) of >2% will be used to identify CHIP. 
and those with VAF >10% will be considered large clones. CHIP calling will be 
conducted at BROAD institute. 

The covariates that are not measured at the baseline, including those measure at V1 or V4 
are additional exploratory analyses. 

Statistical Analyses:  
 
Continuous variables will be reported using mean (SD) or median (IQR) depending on 
normality of the data, while categorical variables will be expressed as count (percentage).  
 
Those who were found to have CHIP at visit 2 will be excluded from the analysis of the 
incident CHIP and will be included in the CHIP expansion analysis. The incrementally 
adjusted multivariable logistic regression model will be used to calculate the odds ratio 
for the association between clinical conditions, lifestyle factors, and laboratory markers 
with outcomes. Covariates including clinical parameters will be measured at the baseline 
and change in covariate status over time will not be incorporated. All the analyses will be 
adjusted for age, sex, and ancestry. 
 
Logistic regression models will be constructed to assess associations between covariates 
at visit 2 and incidence or expansion of CHIP at visit 5. In the discovery process, we will 
build univariate models and a full model with all the covariates reported to be associated 
with CHIP in the literature or found to have a p-value <0.1 in our univariate analysis. 
Adjusted P value will be used for multiple comparisons. 
 
We will also explore the association between CHIP and inflammatory markers, including 
IL6 and IL18 measured at V5, to study how they interact to increase ASCVD risk. 
 
Sensitivity Analyses: 
 

• The concordance of the CHIP ascertainment method used in visits 2 and 5 will be 
confirmed using cross-referencing some samples. 
 

• We are resequencing on the newer Novasequ platform with over 400 samples 
from V2 that have incident CHIP at V5 to make sure that technical improvements 
were not the major reason for detecting CHIP.  
 

Limitations: 
 

− Small sample size: analyses of events may be underpowered. 
− There is the potential for residual confounding.  
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